Reg No.:_

Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Second Semester B.Tech Degree Examination June 2022 (2019 scheme)

Course Code: EST130

Course Name: BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING (2019 -Scheme)

PART I : BASIC ELECTRICAL ENGINEERING

Max. Marks: 50

1

2

3

6

Duration: 90 min

(4)

PART A	
Answer all questions, each carries 4 marks	Marks
Three resistors, 6Ω , 10Ω and 15Ω are connected in star configuration. Obtain the	(4)
equivalent resistance in a delta configuration.	
Two coils A and B of 500 and 750 turns respectively are connected in series on	(4)
the same magnetic circuit of reluctance 1.55×10^6 AT/Wb. Assuming that there	
is no flux leakage, calculate (i) self-inductance of each coil and (ii) mutual	
inductance between coils.	
Explain the concept of statically induced emf in a magnetic circuit.	(4)

- 4 Derive the relation between line and phase voltages in a 3 phase star connected (4) system.
- 5 Define the following terms with an example:

a) Phase b) Phase difference

PART B

Answer one full question from each module, each question carries 10 marks.

MODULE 1

Find the mesh currents i_1 , i_2 , i_3 in the circuit shown in Figure 1 by performing (10) mesh analysis

0100EST130052201

OR

Find the node voltages v_1 and v_2 in the circuit given in Fig. 2. Also find the power (10) dissipated in the 4Ω resistor.

MODULE 2

a A core forms a closed magnetic loop of path length 32 cm. Half of this path has (6) a cross-sectional area of 2 cm² and relative permeability 800. The other half has a cross-sectional area of 4 cm² and relative permeability 400. Find the current needed to produce a flux of 0. 4 Wb in the core if it is wound with 1000 turns of insulated wire. Ignore leakage and fringing effects.

b Compare electric and magnetic circuits.

(4)

OR

- 9 a An iron ring of cross-sectional area 6 cm² is wound with a wire of 100 turns and (8) has a saw cut of 2 mm. Calculate the magnetising current required to produce a flux of 0.1 mWb. if mean length of magnetic path is 30 cm and relative permeability of iron is 470.
 - b Define the terms relative permeability and flux density and give the relation (2)between the two terms.

MODULE 3

10 Explain with phasor diagram instantaneous power when alternating current is (10) supplied through a series R-L circuit. Also draw the impedance triangle and write an expression for active, reactive and apparent power in R-L circuit.

OR

11 A balanced three phase load has per phase impedance of (30 + j50) ohm. if the (10) load is connected across 400 V, 3 phase supply, find (i) Phase current (ii) line current (iii) power supplied to the load when it is connected in (a) star (b) delta.

0100EST130052201

PART 2 : BASIC ELECTRONICS ENGINEERING

Max. N	Marks: 50 Durat	tion: 90 min
	PART A Answer all questions, each carries 4 marks	Marks
12	Draw the symbol of resistor and explain any three specifications.	(4)
13	For an NPN Transistor, $\alpha = 0.98$, I _B =100 μ A, Find I _E and I _C .	(4)
14	Explain the action of shunt capacitor filter.	(4)
15	Explain the working principle of Zener voltage regulator.	(4)
16	Differentiate between amplitude modulation (AM) and frequency modulation	on (4)
	(FM).	
	PART B	

Answer one full question from each module, each question carries 10 marks.

MODULE 4

17	а	Explain with necessary diagrams, the principle of operation of NPN transistor	(5)
	b	Describe the colour coding of a resistor with example.	(5)

OR

18	a	Draw the circuit diagram of a common emitter amplifier.	(3)
	b	Explain the input and output characteristics of common emitter configuration	(7)
		with neat diagrams	

MODULE 5

Describe the components of a DC power supply using a neat block diagram. 19 (10)

OR

20 Explain the working of RC coupled amplifier with circuit diagram and relevant (10) waveforms. Also explain the frequency response of RC coupled amplifier.

MODULE 6

21	а	Explain the concept of cells in cellular communication.	(3)
	b	Draw the block diagram of GSM and explain the principle of operation.	(7)
		OR	
22	a	Describe the principle and working of an antenna.	(6)
	b	What is frequency reuse? Explain with a diagram.	(4)

М