Reg No.:___

Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Second Semester B.Tech Degree Regular and Supplementary Examination June 2023 (2019 Scheme)

Course Code: MAT 102

Course Name: VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS

(2019 SCHEME)

Max. M	Iarks: 100 Duration: 3 D	Hours
	PART A	
	Answer all Questions. Each question carries 3 Marks	Marks
1	Find the parametric equation of the tangent vector of the curve $\overrightarrow{r(t)} = t^2 \hat{i} + t^2 \hat{j}$	(3)
	$2t^3 \hat{j} + 3t \hat{k} at t = 1.$	
2	Find the directional derivative of $f(x, y) = xe^{y}$ at (1,1) in the direction of the	(3)
	vector $\hat{i} - \hat{j}$.	
3	Use Green's theorem to evaluate $\oint_C x dy - y dx$, where C is the circle	(3)
	$x^2 + y^2 = 4.$	
4	Determine whether the vector field $\vec{F} = 4(x^3 - x)\hat{\imath} + 4(y^3 - y)\hat{\jmath} + 4(z^3 - z)\hat{k}$	(3)
	is free of sources and sinks. If not locate them.	
5	Show that the functions x , $x \ln x$ are linearly independent.	(3)
6	Solve the differential equation $y'' + 4y' + 2.5y = 0$.	(3)
7	Find the Laplace transform of sin $4t \cos 3t$.	(3)
8	Find the Laplace transform of $e^{-3t}u(t-1)$.	(3)
9	Determine the Fourier sine Transform of $f(x) = 3x$, $0 < x < 6$.	(3)
10	Find the Fourier sine integral of $f(x) = \begin{cases} sinx & if \ 0 < x < \pi \\ 0 & if \ x > \pi \end{cases}$	(3)

PART B

Answer one full question from each module, each question carries 14 marks

Module I

11 a	Find the	divergence and	curl of the vec	ctor field $\vec{F}(x,$	$y,z) = zy\hat{i}$	$(1 + y^2 x_i) + (1 + y^2 x_i)$	$yz^2\hat{k}$.	(7)
------	----------	----------------	-----------------	-------------------------	--------------------	---------------------------------	-----------------	-----

b Show that $\vec{F} = (cosy + ycosx)\hat{i} + (sinx - xsiny)\hat{j}$ is a conservative vector (7) field. Hence find a potential function for it.

OR

- 12 a Find the work done by the force $\vec{F} = xy\hat{i} + yz\hat{j} + xz\hat{k}$ on a particle that moves (7) along the curve $C: \vec{r}(t) = t\hat{i} + t^2\hat{j} + t^3\hat{k}$ where $0 \le t \le 1$.
 - ^b Show that $\int_{c} (3x^{2}e^{y}dx + x^{3}e^{y}dy)$ is independent of the path and hence evaluate (7) the integral from (0,0) to (3,2).

Module II

- ¹³ a Using Green's theorem, evaluate the line integral $\int_c (xy + y^2) dx + x^2 dy$ (7) where C is bounded by y = x and $y = x^2$ and positively oriented.
 - b Evaluate the surface integral $\iint_{\sigma} z^2 dS$, where σ is the portion of the cone (7) $z = \sqrt{x^2 + y^2}$ between the planes z=1 and z=3.

OR

¹⁴ a Evaluate $\iint_{S} \vec{F} \cdot \hat{n} dS$, where *S* is the surface of the cylinder $x^{2} + y^{2} = 4, z = (7)$ 0, z = 3 where $\vec{F} = (2x - y)\vec{i} + (2y - z)\vec{j} + z^{2}\vec{k}$.

^b Apply Stoke's theorem to evaluate $\int_C (x - y)dx + (y - z)dy + (z - x)dz$ (7) where C is the boundary of the portion of the plane x + y + z = 1 in the first octant.

Module III

- 15 a Solve the Cauchy -Euler differential equation $(x^2D^2 3xD + 10)y = 0.$ (7)
 - b Solve the initial value problem y'' 2y' + 5y = 0, y(0) = -3, y'(0) = 1. (7)

OR

16	a	By the method of undetermined coefficients, solve $y'' + y' - 2y = sinx$.	(7)
----	---	--	-----

^b Using method of variation of parameters solve $\frac{d^2y}{dx^2} + 4y = \sec 2x$. (7)

Module IV

17	а	Find the Laplace transform of $\cos^2 t$.	(7)
	b	Find the inverse Laplace transform of $\frac{3s+2}{(s-1)(s-1)}$.	(7)

OR

- 18 a Using Laplace transform solve $y'' + 5y' + 6y = e^{-2t}$ given that (7) y(0) = y'(0) = 1
 - b Find the inverse Laplace transform of $\frac{s}{(s^2+a^2)^2}$ using convolution. (7)

Module V

19	a	Find the Fourier transform and integral representation of	(7)
		$f(x) = \begin{cases} 1, & x < 1 \\ o, & otherwise \end{cases}$ Hence show that $\int_0^\infty \frac{\sin w}{w} dw = \pi/2$	
	b	Find the Fourier sine transform and inverse transform of $e^{-ax} > 0$	(7)

OR

20 a Find the complex Fourier transform of $f(x) = \begin{cases} sinx, |x| \le a, a > 0 \\ 0, |x| > a \end{cases}$ (7)

(7)

b Find the Fourier transform and integral representation of

$$f(x) = \begin{cases} 1 - x^2, & |x| \le 1 \\ 0, & otherwise \\ **** \end{cases}$$

