Reg No.:	Name:

B

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Second Semester B.Tech Degree Regular and Supplementary Examination June 2023 (2019 Scheme)

Course Code: PHT 100 Course Name: ENGINEERING PHYSICS A (2019 -Scheme)

Ma	x. M	x. Marks: 100		Duration: 3 Hours	
		PART A		Marks	
1		Answer all questions, each carries 3 marks What do you meant by resonance in forced oscillations? Give one exam	ple.	(3)	
2		Write down the three dimensional wave equation and its solution.		(3)	
3		How can you test the optical planeness of a glass plate by air wedge me	thod?	(3)	
4		Distinguish between Fresnel and Fraunhoffer classes of diffraction,		(3)	
5		What is quantum mechanical tunnelling? Give two examples based on the phenomenon.	his	(3)	
6		What are nanomaterials? Why do these materials exhibit properties different those of their classical counterparts?	erent from	(3)	
7		Differentiate between Magnetic susceptibility and Magnetic permeabilit the relation between them.	y. Write	(3)	
8		State and explain the equation of continuity for time varying fields.		(3)	
9		Mention three advantages of fibre optic communication system.		(3)	
10		Explain the working of LED.		(3)	
		PART B			
		Answer one full question from each module, each question carries 14	marks.		
		MODULE 1			
11	a)	Frame and solve the differential equation of a damped harmonic oscillator	or. Derive	(10)	
		the expression of displacement for underdamped, critically damped	and over		
		damped conditions and plot the results in a time - displacement graph.			
	b)	The amplitude of an underdamped harmonic oscillator reduces to 1/1	10 th of its		
		initial value after 100 oscillations. Its time period is 1.15s . Calculate the constant and relaxation time.	damping	(4)	
12	a)	Derive an expression for the fundamental frequency of transverse vibra stretched string.	ations of a	(10)	

0100PHT100012203

 $y = 3.5x10^{-3} \sin 2\pi (0.2x - 50t)$ where x is measured in meters and t in seconds.

(4)

b) The equation of a wave travelling in a string is given by

		Evaluate the amplitude, wavelength, frequency and velocity of propagation.	
		MODULE 2	
13	a)	Explain the formation of Newton's rings and show that the radius of dark ring is	(11)
		proportional to the square root of natural numbers. How can we use Newton's rings	
		experiment to determine the refractive index of a liquid.	
	b)	In Newton's ring experiment the radius of the 10^{th} dark ring is $0.75cm$. When the	
		air film is replaced by a drop of liquid, the radius reduces to 0.65cm . Find the	(3)
		refractive index of the liquid.	
14	a)	Derive grating equation with proper diagram. What is the effect of increasing the	(10)
		number of lines on the dispersive power of grating?	
	b)	At what angle will 650nm light produce a second order maximum when falling on	
		a grating whose grating element is 1.2 x10 ⁻³ cm.	(4)
		MODULE 3	
15	a)	What are matter waves? Obtain an expression for de Broglie wavelength. Derive	(10)
		expressions for the de Broglie wavelength of an electron (i) accelerated from rest	
		through a potential of V volts (ii) having kinetic energy T.	
	b)	An electron is confined to one dimensional potential box of width 25Å. Calculate	(4)
		the energies corresponding to the first and second quantum states in eV.	
16	a)	Explain optical, electrical and mechanical properties of nanomaterials. Write any	(10)
		four applications of nanomaterials in the medical field.	
	b)	What are quantum dots and quantum sheets?	(4)
		MODULE 4	
17	a)	How paramagnetic substances differ from Ferromagnetic substances? Write two	(10)
		examples for each of them.	
	b)	State Faraday's laws of Electromagnetic induction. What is Lenz's law?	(4)
18	a)	From the basic laws of electricity and magnetism, deduce Maxwell's four field	(10)
		equations.	
	b)	Compare displacement current and conduction current.	(4)

0100PHT100012203

MODULE 5

- 19 a) Explain BCS theory of superconductivity. Describe high temperature (10) superconductors. Write three applications of superconductors.
 - b) A light emitting diode is made of GaAsP having a band gap of **1.9eV**. Determine (4) the wavelength of the radiation emitted.
- 20 a) Explain how light is propagated through an optical fibre. Define numerical (10) aperture of an optical fibre and derive the expression for numerical aperture of a step index fibre.
 - b) In an optical fibre, the core material has refractive index **1.43** and refractive index of the cladding material is **1.4**. Find numerical aperture and acceptance angle. (4)
