APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Second Semester B.Tech Degree (S, FE) Examination January 2024 (2019 Scheme)

Course Code: EST130 Course Name: BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING (2019 -Scheme)

PART I : BASIC ELECTRICAL ENGINEERING

Max. Marks: 50

1

Duration: 90 min

PART A

Answer all questions, each carries 4 marks

Marks

Calculate the current drawn from the supply in the circuit shown below. (4)

- 2 Three resistors $R_A=6$ ohm, $R_B=4$ ohm and Rc=3 ohm is connected in star. Obtain (4) the equivalent delta circuit.
- 3 Derive the expression for energy stored by an inductor. (4)
 - Define Coefficient of coupling. Show the relationship between coefficient of (4) coupling and mutual inductance.
 - Prove that the power consumed is zero in a pure capacitive circuit is zero when (4) an alternating sinusoidal voltage is applied. Draw the phasors for voltage and current

PART B

Answer one full question from each module, each question carries 10 marks.

MODULE 1

6

4

5

Using mesh analysis determine the magnitude and direction of the current (10) flowing through 3 ohm resistor.

0100EST130022301

OR

Using Nodal analysis find currents i1, i2,i3 andi4.. (10)

Calculate the average value , rms value and form factor of the output voltage (10) wave of half wave rectifier.

OR

- 9 (a) A toroidal air- cored coil has 1000 turns closely wound, the mean radius of the (6) toroid is 30cm and the diameter of each turn is 4 cm. when a current of 10 A flows through it, find
 - a) MMF of the coil
 - b) flux produced

8

- c) Flux density
- (b) Derive the expression for self-inductance of a coil.

MODULE 3

(4)

10 A series RLC circuit containing a resistance of 12Ω , an inductance of 0.15H and (10) a capacitor of 100uF are connected in series across a 100V, 50Hz supply.

2

0100EST130022301

Calculate the total circuit impedance, the circuits current, voltage across each element, power factor

OR

- 11 (a) Give reasons for the adoption of three phase A.C. systems over single phase A.C. (4) systems.
 - (b) A balanced delta connected load of impedance 16 +j12 Ω/phase is connected to (6) a three phase 400V supply. Find the phase current, line current, power factor, Active power and reactive power.

PART 2 : BASIC ELECTRONICS ENGINEERING

Max. Marks: 50

Duration: 90 min

PART A

Answer all questions, each carries 4 marks

Marks

12	What is a variable resistor? List any two applications of variable resistor.	(4)
13	Explain what is avalanche breakdown in a diode.	(4)
14	Draw the output characteristics of a transistor in Common Emitter configuration	(4)
	and show the 3 regions of operation.	
15	Draw the block diagram of an electronic instrumentation system.	(4)
16	Explain the cellular concept in mobile communication.	(4)

PART B

Answer one full question from each module, each question carries 10 marks.

MODULE 4

17 Explain the action of a PN junction diode under forward biased and reverse (10) biased condition. Draw its VI characteristics.

OR

18 With neat sketches, explain the working of a NPN transistor. (10)Also draw the three configurations of a transistor.

MODULE 5

- 19 a) Explain the working of a capacitor filter with relevant waveforms. (4)
 - b) Draw the circuit diagram and explain the working of a simple Zener voltage (6) regulator.

OR

3

0100EST130022301

20	a)	Explain the concept of voltage divider biasing in a Common Emitter amplifier	(6)
		circuit.	
	b)	Explain the frequency response of an RC coupled amplifier.	(4)
		MODULE 6	
21		Draw and explain the block diagram of a super heterodyne receiver.	(10)
		OR	
22		With a block diagram explain the principle of a GSM system.	(10)
