Reg No.:___

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Second Semester B.Tech Degree (S, FE) Examination January 2024 (2019 Scheme)

Course Code: MAT 102

Course Name: VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS

(2019 SCHEME)

Max. M	Iarks: 100 Duration: 3 I	Duration: 3 Hours				
	PART A					
	Answer all Questions. Each question carries 3 Marks	Marks				
1	Find the parametric equation of the tangent line to the circular helix $x =$	(3)				
	$\cos t$, $y = \sin t$, $z = t$, where $t = \pi$.					
2	If $\bar{f}(x, y, z) = x^2 y \hat{\imath} + 2y^3 z \hat{\jmath} + 3z \hat{k}$, find $div \bar{f}$.	(3)				
3	Use Green's theorem to evaluate $\int_{c} (x^2 - 3y) dx + 3x dy$, where C the circle	(3)				
	$x^2 + y^2 = 4.$					
4	Show that $\overline{f} = (y + z) \hat{\iota} - xz^3 \hat{\jmath} + x^2 \sin y \hat{k}$ is free of source and sink.	(3)				
5	Solve $y''' + 9y' = 0$.	(3)				
6	Find the Wronskian corresponding to the solution of $y'' - 2y' + y = 0$					
7	Find the Laplace transform of $\sin^2 2t$	(3)				
8	Find $L^{-1}\left\{\frac{1}{(s-1)(s-2)}\right\}$	(3)				
9	Find the Fourier cosine integral representation of the function	(3)				
	$f(x) = \begin{cases} 1 & : if \ 0 < x < 1 \\ 0 & : & if \ x > 1 \end{cases}$					
10	Find the Fourier cosine transform of e^{-x} , $x > 0$	(3)				
PART B Answer one full question from each module, each question carries 14 marks						

Module I

11	a)	Find the directional derivative of $f(x, y, z) = x^2y - yz^3 + z$ at the point	
		$(1, -2, 0)$ in the direction of the vector $\bar{a} = 2\hat{i} + \hat{j} - 2\hat{k}$.	(7)

b) Evaluate $\int_{c} (3x^2 + y^2) dx + 2xy dy$, along the circular arc C given by

$$x = \cos t$$
, $y = \sin t$, $0 \le t \le \frac{\pi}{2}$ (7)

OR

1

0100MAT102062302

- 12 a) Find the work done by the force field $\bar{f} = xy\,\hat{\imath} + yz\,\hat{\jmath} + xz\,\hat{k}$ on a particle that moves along the curve $\bar{r}(t) = t\,\hat{\imath} + t^2z\,\hat{\jmath} + t^3\,\hat{k}, 0 \le t \le 1$. (7)
 - b) Show that the force field $\bar{f} = y \,\hat{i} + x \,\hat{j}$ is conservative. Hence evaluate $\int_{(0,0)}^{(1,1)} \bar{f} \, d\bar{r}$ (7)

Module II

13 a) Evaluate the surface integral $\iint_{\sigma} xz \, ds$, where σ is the portion of the plane x + y + z = 1, that lies in the first octant. (7)

b) Use Stokes' theorem to evaluate $\int_c \bar{f} d\bar{r}$, where $\bar{f} = (x - 2y)\hat{i} + (y - z)\hat{j} + (z - x)\hat{k}$ and *C* is the circle $x^2 + y^2 = a^2$ in the *xy*-plane with counter clockwise orientation looking down the positive *z* axis. (7)

OR

- 14 a) Let σ be the portion of the surface $z = 1 x^2 y^2$ that lies above the *xy*-plane. (7) Find the flux of the vector field $\bar{f} = x \hat{i} + y\hat{j} + z \hat{k}$ across σ .
 - b) Evaluate $\int_{C} tan^{-1}y \, dx \frac{y^2 x}{1+y^2} \, dy$, where *C* is the square with vertices (7) (0,0), (1,0), (0,1) and (1,1).

Module III

15 a)	Sol	e the initial	value probl	em y'' -	+9y =	0, y(0) =	= 0.2, y'(0)) = -1.5.	(7)
-------	-----	---------------	-------------	----------	-------	-----------	--------------	-----------	-----

b) By the method of variation of parameters to solve $y'' + 4y = \tan 2x$. (7)

OR

16	a)	By the method of undetermined coefficients solve $y'' + 2y' + 4y = 3e^{-x}$.	(7)
	b)	Solve $x^2y'' + xy' + 9y = 0$, $y(1) = 0$, $y'(1) = 2.5$.	(7)

Module IV

17 a) Find the Laplace transform of (i) $t \sin 2t$ (ii) $e^{-t} \sin 3t \cos 2t$. (7)

- b) Using convolution theorem find $L^{-1}\left\{\frac{1}{s(s^2+4)}\right\}$. (7)
 - OR

18 a) Find
$$L^{-1}\left\{\frac{4s+5}{(s+2)(s-1)^2}\right\}$$
. (7)
b) (7)

Use Laplace transforms to solve y'' + 2y' + 2y = 0, y(0) = y'(0) = 1.

Module V

¹⁹ a) Find the Fourier transform of $f(x) = \begin{cases} 1: & \text{if } |x| < 1 \\ 0: & \text{otherwise} \end{cases}$ (7)

0100MAT102062302

b) Find the Fourier sine integral of $f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & x > \pi \end{cases}$ (7)

OR

20 a) Using Fourier integral representation show that $\int_{0}^{\infty} \frac{\cos \omega x}{1+\omega^{2}} d\omega = \frac{\pi}{2}e^{-x}, x > 0.$ (7) Find the Fourier sine transform of $f(x) = \begin{cases} k & 0 < x < a \\ 0 & x > a \end{cases}$ (7)
