Reg No.:_

Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Second Semester B.Tech Degree (S, FE) Examination January 2024 (2019 Scheme)

Course Code: PHT 100 Course Name: ENGINEERING PHYSICS A (2019 -Scheme)

Max. Marks: 100

Duration: 3 Hours

	PART A	
	Answer all questions, each carries 3 marks	Marks
1	Define Q factor of a damped harmonic oscillator. State the factors on which it	(3)
	depends.	
2	Write the one dimensional wave equation. Explain the parameters in it.	(3)
3	How can you test the planeness of a glass plate using air wedge?	(3)
4	What is grating element? Write down the relation connecting grating element,	(3)
	wavelength of light and angle of diffraction.	
5	What is Quantum Mechanical Tunnelling? Name two electronic devices based on	(3)
	this effect.	
6	Discuss the mechanical properties of nano materials.	(3)
7	Distinguish between magnetic induction and magnetizing field.	(3)
8	Write down Maxwell's equations in differential form.	(3)
9	Show that superconductors are perfect diamagnets.	(3)
10	Explain the working of a Photo diode.	(3)
	PART B	

Answer one full question from each module, each question carries 14 marks.

MODULE 1

- a Write down the differential equation for a forced harmonic oscillator. Derive (10) expressions for the amplitude and initial phase of forced oscillations in terms of the driving frequency.
 - b The equation of a wave travelling along a string is given by (4)

 $y = \cos \pi (0.5x - 200t)$, where y is in centimetres and t is in seconds. Evaluate the amplitude, wavelength, frequency and speed of the wave.

12 a Derive an expression for the velocity of transverse waves in a stretched string and (10) state the laws of transverse vibrations.

b A piece of wire **60 cm** long and mass **1.2 g** is stretched by a load of **3 kg**. Find the (4) frequency of the second harmonic.

MODULE 2

- 13 a Show that in Newton's rings experiment, the radii of dark rings are directly (10) proportional to square root of natural numbers. What will happen if a liquid drop is introduced in between the lens and glass plate.
 - b Light of wavelength 500 nm falls normally on two glass plates enclosing a wedge (4) shaped air film. The plates touch at one end and are separated at 5 cm from that end by a wire. If the band width of the fringes obtained is 0.05 mm, find the diameter of the wire.
- 14 a How a plane transmission grating is produced? What is grating element? State (10)
 Rayleigh's criterion for spectral resolution. Define resolving power and dispersive power of a grating with expression.
 - b Light of wavelength 550 nm is incident normally on a plane transmission grating (4) having 6000 lines/ cm. Calculate the angle at which the principal maxima of the first order is formed.

MODULE 3

- 15 a Write the Schrodinger equation for a particle in one dimensional infinite square (10) well potential and derive the normalised wave function.
 - b Compute the de-Broglie wavelength of an electron whose kinetic energy is **15eV**. (4)
- 16 a Explain increase in surface to volume ratio in nanomaterials. Write a short note on (10) quantum confinement and explain nanosheet, nanorod and quantum dot.
 - b Write any four applications of nano materials.

(4)

MODULE 4

- 17 a State Gauss' law in magnetism, Ampere's circuital law, Faraday's laws of (10) electromagnetic induction and Lenz's law. Give their equations.
 - b A magnetising field of 1000A/m produces a magnetic flux of 2x10⁻⁵ Weber in a (4)
 bar of iron of 0.2 cm² cross-section. Calculate permeability and susceptibility of the bar.
- 18 a Define gradient, divergence and curl and illustrate their physical significance. (10)
 State Gauss' divergence theorem.
 - b Distinguish between conduction current and displacement current. (4)

MODULE 5

19 a Write a note on high temperature superconductors. Distinguish between Type I (10) and Type II superconductors with appropriate diagrams and examples.

(4)

- b Mention any four applications of superconductivity.
- 20 a Draw the block diagram of optical fibre communication system and explain its (10) various functional blocks. Mention any four advantages of optical fibres over conventional transmission lines.
 - b Calculate the numerical aperture and acceptance angle of an optical fibre with a (4) core of refractive index 1.62 and a cladding of refractive index 1.52.
