Reg No.:___

Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Second Semester B.Tech Degree (R, S) Examination May 2024 (2019 Scheme)

Course Code: MAT 102 Course Name: VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS

(2019 SCHEME)

Max. Marks: 100

PART A

Duration: 3 Hours

	Answer all Questions. Each question carries 3 Marks	Marks
1	If $\bar{r} = e^{-t} \hat{\iota} + e^t \hat{j}$ is the position vector of a moving particle, find its velocity at $t = 0$.	(3)
2	Find a unit vector in the direction in which $f(x, y) = 4x^3y$ increases most rapidly at	(3)
	P(-1, 1), and find the rate of change of f at P in that direction.	
3	Evaluate $\int_c (x^2 - 3y) dx + 3x dy$, using Green's theorem, C being the circle	(3)
	$x^2 + y^2 = 4.$	
4	Determine whether the vector field $\overline{F}(x, y, z) = x^3 \hat{\iota} + y^3 \hat{j} + z^3 \hat{k}$ is free of sources	(3)
	and sinks. If it is not, locate them.	
5	Find whether the solution set $\{x \ sinx, x \ cosx \}$ forms a basis or not.	(3)
6	Solve $y''' + y'' = 0$.	(3)
7	Find the Laplace Transform of $e^{-2t} sin5t$.	(3)
8	Find the inverse Laplace Transform of $\frac{4}{(s+1)^4}$	(3)
9	Find the Fourier cosine integral of $f(x) = \begin{cases} 1, & if x < 1, \\ 0, & if x > 1 \end{cases}$	(3)
10	Find the Fourier sine transform of e^{-x} .	(3)
	PART B	

Answer one full question from each module, each question carries 14 marks

Module I

¹¹ a If
$$\bar{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
 and $r = |\bar{r}|$, prove that $\nabla f(r) = \frac{f'(r)}{r}\bar{r}$. (7)

^b Prove that the line integral
$$\int_{(-1,2)}^{(0,1)} (3x - y + 1)dx - (x + 6y + 2)dy$$
 is independent (7) of the path. Also find its value.

OR

Page 1 of 3

0100MAT102052401

- 12 a Find the work done by the force field $\overline{F}(x, y, z) = z \hat{i} + x \hat{j} + y \hat{k}$, where C is the curve (7) $\overline{r}(t) = sint \hat{i} + 4sint \hat{j} + sin^2 t \hat{k}, 0 \le t \le \frac{\pi}{2}$.
 - b Find $\nabla \times (\nabla \times \overline{f})$, if $\overline{f} = y^2 x \,\hat{\imath} 3yz \,\hat{\jmath} + xz \,\hat{k}$ (7)

Module II

- 13 a Find the area of the ellipse $x = a \cos t$, $y = b \sin t$; $0 \le t \le 2\pi$ using line integrals. (7)
 - b Use Stoke's theorem to evaluate $\int_c \overline{F} \cdot d\overline{r}$, where $\overline{F}(x, y, z) = xy \hat{i} + x^2 \hat{j} + z^2 \hat{k}$ and (7) C is the intersection of the rectangle $0 \le x \le 1, 0 \le y \le 3$, and the plane z = y.

OR

- 14 a Using Green's theorem evaluate $\int_c x \cos y \, dx y \sin x \, dy$ where C is the square with (7) vertices $(0, 0), (0, \pi), (\pi, \pi), \text{and} (\pi, 0)$.
 - b If $\overline{F} = x^3 \hat{\imath} + y^3 \hat{\jmath} + z^3 \hat{k}$, σ is the surface of the cylinder bounded by $x^2 + y^2 = 4$, z = (7)0, z = 4, find the outward flux of \overline{F} across σ using Divergence theorem.

Module III

15 a Solve the initial value problem
$$(D^2 + 4D + 5)y = 0$$
, $y(0) = 2$, $y'(0) = -5$. (7)

b Solve $y'' - 6y' + 9y = \frac{e^{3x}}{x^2}$, by the method of variation of parameters. (7)

OR

16	a	Solve by the method of undetermined coefficients, $y'' - 4y' + 3y = \sin 3x$.	(7)
	b	Solve $x^2y'' + 7xy' + 13y = 0$, $y(1) = 0$, $y'(1) = 2$.	(7)

Module IV

- 17 a Solve the differential equation using Laplace transform, (7) $y'' + 2y' + 6y = 6te^{-t}$, given that y(0)=2, y'(0) = 5.
 - b Find the inverse Laplace transform of (i) $\frac{2s+1}{s^2+2s+5}$ (ii) $\frac{e^{-s}}{s^2+2s+1}$. (7)

OR

18 a Using convolution find the inverse Laplace transform of
$$\frac{1}{s^2(s^2+a^2)}$$
. (7)

b Find the Laplace transform of (i) $\sin^2 3t$ (ii) t^2 in $1 \le t \le 2$. (7)

Module V

Hence deduce that
$$\int_0^\infty \frac{1-\cos\omega}{\omega} \sin\left(\frac{\omega}{2}\right) d\omega = \begin{cases} \frac{\pi}{2}, & \text{if } 0 < x < 1, \\ 0, & \text{if } x > 1 \end{cases}$$

Page **3** of **3**