Reg No.:___

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester B.Tech Degree (S, FE) Examination June 2024 (2019 Scheme)

Course Code: MAT 101 Course Name: LINEAR ALGEBRA AND CALCULUS (2019 -Scheme)

Max. N	Marks: 100 Duration: 3	Hours
	PART A	
	Answer all questions, each carries 3 marks	Marks
1	Find the rank of the matrix $A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 1 & 1 \\ 6 & 2 & 4 \end{bmatrix}$.	(3)
2	Find the sum and product of eigen values of $A = \begin{bmatrix} 3 & 1 & -1 \\ 0 & 2 & 6 \\ 0 & 0 & 6 \end{bmatrix}$ without finding	(3)
	the characteristic equation.	
3	Find the slope of the sphere $x^2 + y^2 + z^2 = 14$ in the y direction at (1,2,3)	(3)
4	Show that $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$, where $z = 10x^5y^3 + 5x + 2y$	(3)
5	Find the area of the region bounded by $y = x^2$ and $y = x$.	(3)
6	Evaluate $\int_2^4 \int_1^3 (40-2xy) dx dy$.	(3)
7	Test the convergence of the series $\sum_{k=1}^{\infty} \frac{99^k}{k!}$	(3)
8	Test the convergence of the series $\sum_{k=1}^{\infty} \frac{k}{k+1}$	(3)
9	Find the Maclaurin series for the function $f(x) = xe^x$	(3)
10	Write Binomial series for $(1 + x^2)^3$	(3)
	PART B	

Answer one full question from each module, each question carries 14 marks.

MODULE 1

11	a	Solve the following system of equations using Gauss elimination method	(7)
		y - 3z = -1	
		x + z = 1	
		3x + y = 2	
		x + y - 2z = 0	

1

0100MAT101052401

- b Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$. (7)
- ¹² a Find the matrix of the transformation that diagonalise the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. (7) Also write the diagonal matrix.
 - b Find the value of α for which the system of equation is consistent. (7) x + y + z = 1 $x + 2y + 3z = \alpha$ $x + 5y + 9z = \alpha^2$

MODULE 2

- 13 a Find the local linear approximation L of $f(x, y, z) = \log (x + yz)$ at the point (7) (2,1,-1).
 - b If w = f(P, Q, R) where P = 2x 3y, Q = 3y 4z, R = 4z 2x, then prove (7) that $\frac{1}{2}\frac{\partial w}{\partial x} + \frac{1}{3}\frac{\partial w}{\partial y} + \frac{1}{4}\frac{\partial w}{\partial z} = 0$

(7)

14 a Locate all relative extrema and saddle points of $x^3 + y^3 - 3xy = 0.$ (7)

- ^b Find the differential *dw* of the functions.
 - i) $w = \frac{xyz}{x+y+z}$ ii) $w = e^{xy}$

MODULE 3

- 15 a Evaluate $\iint_R \frac{1}{1+x^2+y^2} dA$ where *R* is the sector in the first quadrant bounded by (7) $y = 0, \ y = x, \ x^2 + y^2 = 9.$
 - b Evaluate the integral $\int_0^4 \int_y^4 \frac{x}{x^2 + y^2} dx dy$ by reversing the order of integration. (7)
- 16 a Use triple integral to find the volume of the solid within the cylinder (7) $x^2 + y^2 = 9$ and between the planes z = 1 and x + z = 5.
 - b Find the center of gravity of a triangular lamina with vertices (0,0), (0,1) and (7) (1,0) and density function $\rho(x, y) = xy$ and mass $= \frac{1}{24}$.

MODULE 4

17 a A ball is dropped from a height of 10m. Each time it strikes the ground it (7)

0100MAT101052401

bounces vertically to a height that is $\frac{2}{3}$ of the preceding height. Find the total distance travelled by the ball, if it is assumed to bounce infinitely often.

Check the convergence the following series

b i)
$$\sum_{n=1}^{\infty} \frac{n}{(2n-1)(2n+1)(2n+3)}$$
 (7)
ii) $\sum_{n=1}^{\infty} \left(\frac{n}{n^2+1}\right)^{n^2}$

18 a Show that the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$ is conditionally convergent. (7)

b Check the convergence of the series
$$\frac{1}{3} + \frac{1.2}{3.5} + \frac{1.2.3}{3.5.7} + \cdots$$
 (7)

MODULE 5

19 a Find the Taylor series expansion of $f(x) = x \sin x$ about the point $x = \frac{\pi}{2}$ (7) Find the Fourier series representation of $f(x) = x^2$ in $[-\pi, \pi]$ and deduce that b $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$ (7)

20 a Find the half range Fourier cosine series of
$$f(x) = cosx$$
 in $0 \le x \le \frac{\pi}{2}$ (7)
b Find the half range Fourier sine series of $f(x) = e^x$ in (0.1) (7)
