Duration: 3 Hours

Reg No.:_____

Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech (minor) Degree Examination December 2020

Course Code: ECT285

Course Name: INTRODUCTION TO SIGNALS AND SYSTEMS

Max. Marks: 100

	PART A Answer all questions. Each question carries 3 marks	Marks
1	Distinguish between deterministic and random signals with suitable example.	(3)
2	Find the energy of the continuous signal $x(t) = e^{-2t} u(t)$.	(3)
3	Differentiate between discrete time periodic and non-periodic signals with example.	(3)
4	Define the signal $u(n)$ ad hence sketch the sequence $u(n+2)-2u(n)+u(n-2)$.	(3)
5	Define Linearity and Shift invariance property in systems.	(3)
6	What is BIBO stability?	(3)
7	Find the autocorrelation of the sequence $x(n) = \{3,2,4,1\}$ for n in range 0:3.	(3)
8	What are the properties of convolution sum?	(3)
9	Explain sampling theorem.	(3)
10	Comment about the spectrum of Continuous Time and Discrete Time Fourier transformed signals.	(3)
4	Answer any one full question from each module. Each question carries 14 marks Module 1	5
11	(a) Define and sketch the following continuous time signals:(i) unit impulse function(ii) unit step function	(6)
	(b) Find the even and odd components of the given signals: (i) $x(t) = e^{j2t}$ (ii) $x(t) = [sin(\pi t) + cos(\pi t)]^2$	(8)
12	 (a) For a given composite signal x(t) which is the sum of two periodic signals, explain the steps involved to determine its periodicity condition. 	(6)
	(b) Sketch the following signal $x(t) = u(t+2) - u(t-2)$. Also determine whether	(8)

the given signal is a power signal or energy signal or neither.

Module 2

13 (a) If
$$x(n) = (1,2,-1,0,2,1,1,0,-1)$$
; $-4 \le n \le 4$, plot the following sequences
(i) $x(n-3)$ (ii) $x(-n)$ (6)

(b) Determine whether the sequence $x(n) = \sin(\frac{6\pi n}{7}) + \sin(\frac{\pi n}{8})$ is periodic or not. If periodic, determine the fundamental period. (8)

14 (a) A discrete time sequence is given by x(n) = (1,1,1,1,2,2). Sketch

(i)
$$x(n) - x(n-2)$$
 (8)
(ii) $x(n)u(n+2)$

(6)

(8)

(b) Describe any two standard discrete time signals.

Module 3

¹⁵ (a) Determine whether the following systems are Linear or Non Linear.

(i)
$$y(t) = x^{2}(t)$$
 (8)

ii)
$$y(n) = e^{x(n)}$$

(b) Explain stability and causality of a system. (6)

16 (a) Explain Static and Dynamic Systems. Is the discrete time system described (6)

by the equation y(n) = x(n-1) is static or dynamic?

(b) Determine whether the following systems are Shift invariant or not.

(i)
$$y(t) = x(-t)$$
 (8)

(ii)
$$y(n) = A x(n) + B$$

Module 4

17 (a) Consider a discrete time LTI system with impulse response h(n) given by

 $h(n) = (1/2)^n u(n)$. Determine if the system is Causal and BIBO stable?

(b) Find the output signal y(n) of an LTI system , if the input sequence is x(n) = (6)

 $\{1,1,1,1\}$ and impulse response $h(n) = \{2,2\}$.

18 (a) Find the convolution of the signal,

$\mathbf{x}(\mathbf{t}) = \mathbf{e}^{-\mathbf{t}}$; t ≥ 0	
= 0	; $t < 0$ with the signal	(8)
h(t) = 1	; $0 \le t \le 3$	
= 0	; otherwise	

0800ECT285122001

(b) Prove that convolution of a function x(t) with a unit impulse function $\partial(t)$ results in the function x(t) itself. (6)

Module 5

¹⁹ (a) An analog signal is expressed by the equation

$$\mathbf{x}(t) = \frac{1}{\pi} [\cos(5000\pi t) + \cos(3000\pi t)]$$
(6)

Calculate the Nyquist rate ?

(b) Find the DTFT of sequences.

(i) Unit impulse
(ii)
$$x(n) = \left(\frac{1}{2}\right)^n u(n)$$
 (8)

20 (a) State and prove Parsevals theorem for discrete time Fourier transform. (6)

(b) Find the CTFT of the signals.

(i)	$\mathbf{x}(\mathbf{t}) = \cos(\mathbf{w}_0 \mathbf{t})$	
		(8)

(ii)
$$x(t) = 1; -T \le t \le T$$

= 0; otherwise
